483 research outputs found

    Power in numbers : in silico analysis of multigene families in Arabidopsis thaliana

    Get PDF

    Heterogeneity of the gut microbiome in mice : guidelines for optimizing experimental design

    Get PDF
    Targeted manipulation of the gut flora is increasingly being recognized as a means to improve human health. Yet, the temporal dynamics and intra- and interindividual heterogeneity of the microbiome represent experimental limitations, especially in human cross-sectional studies. Therefore, rodent models represent an invaluable tool to study the host-microbiota interface. Progress in technical and computational tools to investigate the composition and function of the microbiome has opened a new era of research and we gradually begin to understand the parameters that influence variation of host-associated microbial communities. To isolate true effects from confounding factors, it is essential to include such parameters in model intervention studies. Also, explicit journal instructions to include essential information on animal experiments are mandatory. The purpose of this review is to summarize the factors that influence microbiota composition in mice and to provide guidelines to improve the reproducibility of animal experiments.Given the unmet need for standardizing the experimental work flow related to gut microbial research in animals, guidelines are required to isolate true effects from confounding factors.Given the unmet need for standardizing the experimental work flow related to gut microbial research in animals, guidelines are required to isolate true effects from confounding factors

    ForCon : a software tool for the conversion of sequence alignments

    Get PDF
    ForCon is a software tool for the conversion of nucleic acid and amino acid sequence alignments that runs on IBMcompatible computers under a Microsoft Windows environment.The program converts alignment formats used by all popular software packages for sequence alignment and phylogenetic tree inference.ForCon is available for free on request from the authors or can be downloaded via internet at URL http://bioc-www.uia.ac.be/u/jraes/ index.html .It is also included in the software package TREECON for Windows (see http://bioc-www.uia.ac.be/u/ yvdp/index.html)

    Antarctic free-living marine nematodes

    Get PDF

    Reconciliation between operational taxonomic units and species boundaries

    Get PDF
    The development of high-throughput sequencing technologies has revolutionised the field of microbial ecology via 16S rRNA gene amplicon sequencing approaches. Clustering those amplicon sequencing reads into operational taxonomic units (OTUs) using a fixed cut-off is a commonly used approach to estimate microbial diversity. A 97% threshold was chosen with the intended purpose that resulting OTUs could be interpreted as a proxy for bacterial species. Our results show that the robustness of such a generalised cut-off is questionable when applied to short amplicons only covering one or two variable regions of the 16S rRNA gene. It will lead to biases in diversity metrics and makes it hard to compare results obtained with amplicons derived with different primer sets. The method introduced within this work takes into account the differential evolutional rates of taxonomic lineages in order to define a dynamic and taxonomic-dependent OTU clustering cut-off score. For a taxonomic family consisting of species showing high evolutionary conservation in the amplified variable regions, the cut-off will be more stringent than 97%. By taking into consideration the amplified variable regions and the taxonomic family when defining this cut-off, such a threshold will lead to more robust results and closer correspondence between OTUs and species. This approach has been implemented in a publicly available software package called DynamiC

    Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice

    Get PDF
    Background: Murine models are a crucial component of gut microbiome research. Unfortunately, a multitude of genetic backgrounds and experimental setups, together with inter-individual variation, complicates cross-study comparisons and a global understanding of the mouse microbiota landscape. Here, we investigate the variability of the healthy mouse microbiota of five common lab mouse strains using 16S rDNA pyrosequencing. Results: We find initial evidence for richness-driven, strain-independent murine enterotypes that show a striking resemblance to those in human, and which associate with calprotectin levels, a marker for intestinal inflammation. After enterotype stratification, we find that genetic, caging and inter-individual variation contribute on average 19%, 31.7% and 45.5%, respectively, to the variance in the murine gut microbiota composition. Genetic distance correlates positively to microbiota distance, so that genetically similar strains have more similar microbiota than genetically distant ones. Specific mouse strains are enriched for specific operational taxonomic units and taxonomic groups, while the 'cage effect' can occur across mouse strain boundaries and is mainly driven by Helicobacter infections. Conclusions: The detection of enterotypes suggests a common ecological cause, possibly low-grade inflammation that might drive differences among gut microbiota composition in mammals. Furthermore, the observed environmental and genetic effects have important consequences for experimental design in mouse microbiome research

    Metagenomics meets time series analysis : unraveling microbial community dynamics

    Get PDF
    The recent increase in the number of microbial time series studies offers new insights into the stability and dynamics of microbial communities, from the world's oceans to human microbiota. Dedicated time series analysis tools allow taking full advantage of these data. Such tools can reveal periodic patterns, help to build predictive models or, on the contrary, quantify irregularities that make community behavior unpredictable. Microbial communities can change abruptly in response to small perturbations, linked to changing conditions or the presence of multiple stable states. With sufficient samples or time points, such alternative states can be detected. In addition, temporal variation of microbial interactions can be captured with time-varying networks. Here, we apply these techniques on multiple longitudinal datasets to illustrate their potential for microbiome research.Peer reviewe

    Universally distributed single-copy genes indicate a constant rate of horizontal transfer

    Get PDF
    Single copy genes, universally distributed across the three domains of life and encoding mostly ancient parts of the translation machinery, are thought to be only rarely subjected to horizontal gene transfer (HGT). Indeed it has been proposed to have occurred in only a few genes and implies a rare, probably not advantageous event in which an ortholog displaces the original gene and has to function in a foreign context (orthologous gene displacement, OGD). Here, we have utilised an automatic method to identify HGT based on a conservative statistical approach capable of robustly assigning both donors and acceptors. Applied to 40 universally single copy genes we found that as many as 68 HGTs (implying OGDs) have occurred in these genes with a rate of 1.7 per family since the last universal common ancestor (LUCA). We examined a number of factors that have been claimed to be fundamental to HGT in general and tested their validity in the subset of universally distributed single copy genes. We found that differing functional constraints impact rates of OGD and the more evolutionarily distant the donor and acceptor, the less likely an OGD is to occur. Furthermore, species with larger genomes are more likely to be subjected to OGD. Most importantly, regardless of the trends above, the number of OGDs increases linearly with time, indicating a neutral, constant rate. This suggests that levels of HGT above this rate may be indicative of positively selected transfers that may allow niche adaptation or bestow other benefits to the recipient organism
    • …
    corecore